
THE PRIVILEGE CONTROL TABLE TOOLKIT:
AN IMPLEMENTATION OF THE SYSTEM BUILD APPROACH

Thomas R. Woodall
Hughes Aircraft Company
2000 E. Imperial Highway

El Segundo, CA 90245
310-334-7603

FAX: 310-334-1242
twoodall@msmail4.hac.com

Roberta Gotfried
Hughes Aircraft Company
2000 E. Imperial Highway

El Segundo, CA 90245
310-334-7655

FAX: 310-334-1242
rgotfried@msmail4.hac.com

1.  Abstract
This paper describes the Privilege Control

Table (PCT) Toolkit as developed for
military real-time embedded avionics
systems. This tool is the evolutionary result
of research and development of the trusted
‘System Build’ concept as originally
described in [SYSBUILD] and refined in
[SYSBLL]. This paper describes what the
tool does and how it is used.

Keywords: System Build, Real-time,
Multilevel Security

2.  Introduction
The shrinking DoD budget is driving

military weapon system architects to design
affordable systems with greater lethality,
survivability, and flexibility requirements.
This is particularly true of air vehicle weapon
systems, where funding limits the number of
systems and aircraft that can be developed
and deployed. For avionics systems, this is
one of many factors that has led to integrated
avionics architectures. Integrated avionics
systems cost less than comparable federated
systems and have the advantage of being able
to provide information with increased
accuracy and understandability to the pilot.
To further enhance lethality, real-time

sharing of information among coordinating
assets is now required. In effect, the avionics
system of one aircraft is one node of a
distributed C4I network. This leads to an
avionics system that is processing an
extremely wide range of information, from
unclassified weather data to highly classified
and compartmentalized information from off-
board assets. This results in the need for a
reliable, high performance, multilevel secure,
embedded avionics system.

In past avionics systems, the hard
scheduling deadlines provided difficult
design challenges. Now, these real-time
systems must additionally meet stringent
security requirements. In order to mitigate the
security impact on real-time performance, the
‘System Build’ concept was developed as
described in [SYSBUILD] and [SYSBLL].

This paper focuses on the PCT Toolkit, a
System Build tool. Section 3 briefly
summarizes the System Build approach and
its motivations and enabling factors; it also
gives a system overview of the PCT Toolkit.
Section 4 describes in detail what functions
the PCT Toolkit performs, Section 5
discusses outstanding security issues
associated with the Toolkit, and Section 6
summarizes the advantages and disadvantages
of the PCT Toolkit and identifies areas of
further work.



3.  The System Build Approach
The System Build approach was

developed as a result of merging two
seemingly conflicting requirements: hard
real-time performance and multilevel
security. Few systems have had to meet both
requirements simultaneously, particularly in
an embedded avionics environment. Results
from research in real-time and secure systems
provided inadequate solutions to meeting
requirements for systems to be built (target
systems).

3.1  System Characteristics
Integrated avionics systems comprise a

closely connected network of heterogeneous
processing nodes connected to a set of
sensors. Real-time characteristics of these
systems are described by specific
performance requirements in terms of
throughput, I/O and data bandwidth, as well
as interrupt latency constraints in
microseconds. Such systems use preemptive
priority-based process scheduling.

Mission success depends on the ability of
the system to process sensor data within time
constraints as well as to adapt rapidly to
changes in the environment.

It is essential that security mechanisms
not adversely impact the ability of the system
to meet timelines, or respond to external
events in a timely manner. Even small
impacts in response times can have an
adverse affect on the ability of the system to
perform functions such as detecting and
tracking targets and responding to events.
Security must be achieved without sacrificing
real-time performance.

3.2  Subjects/Objects Known A Priori
A key enabler of the System Build

approach is that all subjects and objects are
known a priori. This is a result of the
embedded nature of the avionics
environment. The a priori method is also
applicable to a wide range of systems that
have a fixed set of application configurations
over a period of time.

The System Build approach allows access
mediation at the time the software
configuration is “built.” All interactions of
security subjects and objects are known and
may be verified for consistency with the
system security policy before the software is
loaded into the target system. The build-time
tool that performs this function is the PCT
Toolkit.

3.3  Built for a Specific Configuration



The set of system subjects and objects for
a specific software load is given a unique
identifier and is known as a System Build
Configuration. In today’s avionics systems, a
software load may not change for several
months. Furthermore, the hardware
configuration associated with the software
will also not change for the lifetime of the
software load. This fixed combination of
hardware and software components  is also
called the System Build Configuration. See
Figure 3-1.

The inputs to the PCT Toolkit are a
subset of the information that defines a
System Build Configuration. Other
information includes system attributes, such
as the hardware configuration, that are held
constant for all capabilities.

The definition of a System Build
Configuration allows for a range of System
Build Capabilities to be supported. For
example, a System Build Capability might
define the possible combinations of sensor
data processing for a specific set of available
processing assets. The specific set of
capabilities used in a system load depends on
factors which are transparent to the Toolkit.
However, each specific capability must be
defined by the system designer so that the
Toolkit can determine what set of subjects
may be allowed to run simultaneously.

System Build Configuration

Capability 1

Capability 2

Capability 3

Build Attributes

mutually 
exclusive 
at run-time

Held constant for 
all capabilities

Figure 3-1: A System Build Configuration

3.4  System Engineering Methods

Embedded avionics systems are
developed using rigorous engineering
methods. System complexity and size, in
conjunction with safety and mission
criticality factors, have led to a methodology
that results in extensive design analysis and
documentation. Tool support for system and
software engineering methods results in on-
line “databases” and “documentation” that
can be leveraged in implementing System
Build. Application/software/hardware
interfaces are specified and reviewed as a
matter of course. The PCT Toolkit benefits
from these methods by using the interface
definitions, along with the system security
model to validate all interactions.

Results of the Toolkit analysis can be
organized into tables that can be used
efficiently at run-time. Each table, called a
privilege control table, contains only the
validated interactions and resources for a
particular security subject. The operating
system [AOS] performs enforcement at run-
time. Implementation of the AOS and PCT is
discussed further in Section 4.

Invalid interactions are logged for action
by a system administrator (or designated
integration team personnel during system
integration).

3.5  TCB View With System Build
The System Build approach results in a

system that minimizes the real-time
performance of multilevel security measures.
The side effect is that the trusted computing
base (TCB) has been distributed and possibly
enlarged. Figure 3-2 shows how the TCB is
distributed in the System Build approach.



TCB

Real-Time
S ystem

Build
Environment

PCT
Toolkit

CCSCCS

OS

The arrows show the flow of CCS PCTs
from the PCT Toolkit to the OS

Figure 3-2: The System Build Approach

The separation and distribution of the
TCB raises several issues, some of which are
raised in [SYSBLL].

One issue is the effect of System Build on
certification and accreditation (C&A). C&A
of the TCB must be performed on the real-
time operating system in concert with the
Toolkit. Lack of precedent for this approach
impacts the first such system, but should be
ameliorated in future instantiations.

Trusted distribution of PCTs from the
build environment, a secure contractor, or
government site, to the real-time environment
in the embedded system also must be
addressed. This problem is solved today by
use of a cryptochecksum (CCS), a capability
already available in the target system.

3.6  How PCT Toolkit fits into the
Software Development Process

Figure 3-3 shows the integration of the
PCT Toolkit into the Software Development
process. PCT development basically parallels
software development. In fact, at each stage
the products must be consistent. That is, the
source code and the interface information
must be consistent or the resulting PCTs and
executable software will not be consistent.
Inconsistencies can result in a variety of

failures. Section 5.3 addresses these
consistency issues in detail.

At run-time, when the OS loads a
program, it also loads its corresponding PCT.
The PCT can only be accessed by the OS.
The combination of a software program
together with a PCT defines a subject.

Source 
Code

Interface 
Information

One PCT One S/W 
Program

Compilation 
System

PCT 
Toolkit

Build-time

Run-time

One PCT One S/W 
Program

Subject

Figure 3-3: The PCT and Code Development
Processes Through Run-Time

4.  The PCT Toolkit in Detail
The fundamental purpose of the PCT

Toolkit is to perform mediation on an
information flow model of the system during
System Build and to encapsulate the relevant
information and privileges into tables that can
be used at run-time by the OS, thereby
reducing the processing assets dedicated to
security in the real-time environment. Figure
4-1 shows the Toolkit data flow.

In order for the PCT Toolkit to
accomplish this task it must do the following:

1) Understand the Target Environment



2) Build an Information Flow Model from
Interface Definitions

3) Apply the Target Environment
Information to Information Flow Model
(a.k.a. Consistency Checks)

4) Perform mediation using the Bell and
LaPadula [BLP] model on events
requiring mediation

5) Output PCTs and other tables
6) Output reports to assist users
7) Generate a log file to document all input

information, all conclusions (e.g., security
violations), and all outputs generated.

In addition to the above, the PCT Toolkit
allocates resources within some object
classes. As will be shown, this is consistent
with its purpose.

Interface 
Information

Target 
Environment 
Information Reports

Log File

Privilege 
Control 
Tables

Privilege 
Control 
Table 
Toolkit

Figure 4-1: PCT Toolkit Data Flow

4.1  Understanding the Target
In order for the PCT Toolkit to

accomplish its purpose, it must have
knowledge of the target environment. Since
the target environment may change
considerably from one system to another, the
Toolkit must be flexible; therefore, at
initialization the PCT Toolkit reads in
information that configures the PCT Toolkit

for the target environment. This information
is contained in configurable knowledge (CK)
files. The CK files allow for definition of the
hardware implementation, of the security
classifications, and of privileged OS services.

4.1.1  Hardware Information
The hardware CK files describe the

hardware components and their quantity,
interconnect topology, and relevant security
capabilities. For example, security
characteristics of special purpose processors
may be described by the number of allowable
programs served, and the ability of the
processor to maintain separation of data.

4.1.2  Security Information
One CK file read by the Toolkit defines

all classifications in the system and their
dominance relationships. The Toolkit has no
built-in knowledge about classifications. The
security CK files completely defines the
semantics of classifications. It supports
categories and allows for disjoint
classifications to be defined. In addition, as
shown in Figure 4-2, it can be defined such
that two or more classifications can actually
be made equivalent for the purposes of
applying the security policy.

4.1.3  OS Information
The PCT Toolkit and the OS are closely

tied. As in most OSs, there are some
privileged services that are very limited in
their use. The subjects that are allowed to use
these services are specified in a CK file on a
per service basis.

-- Classification Set Definitions



--**********************************
classification_set : LevelSet1
classification            : Unclassified
classification_set : LevelSet2
classification            : Confidential
classification_set : LevelSet3
classification            : Secret
classification_set : LevelSet4
classification : Secret/SAR/CAT1
classification            : Confidential/SAR/CAT1
classification_set : LevelSet5
classification : Secret/SAR/CAT2
classification            : Confidential/SAR/CAT2
classification_set : System-High
classification : System High

-- Dominance Relation assertions
-- (transitivity holds)
--**********************************
assert : System-High dominates LevelSet4
assert : System-High dominates LevelSet5
assert : LevelSet5 dominates LevelSet3
assert : LevelSet4 dominates LevelSet3
assert : LevelSet3 dominates LevelSet2
assert : LevelSet2 dominates LevelSet1

Figure 4-2: Security CK File

4.2  Building an Information Flow Model
After the Toolkit has processed the Target

Environment, it can build an information
flow model based on interface information
defined prior to running the PCT Toolkit.
Two methods of gathering interface
information have been implemented.  The
first involves querying a database based on
user input. The second involves reading a set
of user-specified interface definition files
(IDFs).

The database method is driven by a user
specifying a set of System Build Capability
Tables. There is one table for each capability,
each table listing the subjects that must exist
for that capability. Based on that list, the
Toolkit will query the database for necessary
subject and object information.

The IDF method utilizes one IDF per
subject, and the IDF contains all object access
requests. An IDF is divided into two parts.
One defines the subject and the other defines

object access requests. In the object section
there are subsections for each object type. At
least one IDF in the system must identify the
object attributes for a given object.

Hereafter, the term IDF shall be used to
mean either method. While reading in the
information, the PCT Toolkit performs
semantic checks, e.g., verifying that every
classification used in an IDF is defined in the
Security CK file.

4.3  Consistency Checks
The PCT Toolkit checks data consistency

to ensure input data are well defined. For
example, one consistency check is for readers
and writers of volatile objects, that is, objects
that exist only when power is present. The
PCT Toolkit checks to be sure that there are
both readers and writers of every such object.
If not, a warning message will be generated.
In addition to general data consistency
checks, security-relevant consistency checks
are also performed by the Toolkit.

The PCT Toolkit will verify that all
subject and object names are unique. For
subjects, this means verifying that there is
only one subject definition. If the Toolkit
reads two subject definitions using the same
name it will generate an error. For objects,
the Toolkit assumes there will be only one
definition: if it encounters attributes about an
object with the same name, it will check that
any attributes specified more than once are
identical. Error messages are generated for all
inconsistencies.

Some object classes allow only one writer
per object. The Toolkit will check that this
rule is followed per System Build Capability.

Another consistency check deals with
verifying that software is correctly mapped to
hardware resources. One or more of the
attributes of a subject relate to the hardware
needs of a subject. The Toolkit will verify
that all such mappings are compatible.

4.4  Supports Resource Allocation



As the PCT Toolkit concept began to
evolve from the System Build approach,
several potential enhancements became
apparent. One such enhancement was global
resource allocation, that is, allocation of
resources shared by subjects that are not on
the same processor. The Toolkit will bind
names to specific physical resources.

For example, the Toolkit knows the
attributes of all interprogram messages
including all senders and receivers, and also
has the software/hardware mapping.
Therefore, the Toolkit has all the information
necessary to assign bus labels, and its place
and role in development process makes it
ideal to accomplish this task.

Global resource allocation results in a
single PCT object entry that contains the
rights of the subject to access the object, and
also a mapping of the object to its low-level
resource identifier, e.g., a bus label. Because
this information is created at build-time and
is distributed in a trusted manner via the
PCTs, no run-time consumption of resources
is necessary to accomplish this task. This
enhancement of the System Build approach is
consistent with PCT Toolkit’s purpose, which
is to make security affordable, from a timing
perspective, in the system.

The PCT Toolkit supports several types
of global resource allocation, although system
requirements will dictate which are possible
for a specific Toolkit implementation.

4.5  Build-Time Mediation
The Security Policy Model applied by the

PCT Toolkit is based on the Bell and
LaPadula model [BLP], although another
model could be substituted into the tool.

4.5.1  Applying IDF Classification Labels
The interface information contained in the

IDFs is labeled according to the actual
classification of the information, hereinafter
called content labeling. The PCT Toolkit
labels information according to its container,
hereinafter called container labeling. 

Therefore, if an untrusted HIGH subject
sends a message, M, labeled in an IDF as
LOW, the PCT Toolkit will classify the
message M as HIGH. A read request of M in
an IDF by a HIGH subject will therefore be
allowed. A read request of M in an IDF by a
LOW subject will cause a security error;
however, the error will be traced back to the
offender according to content labeling.
Therefore, the error message will state that
there was an illegal attempt by a HIGH
subject to write a LOW message.

This method is consistent with the model,
and yet preserves the user view of the system
as described in the IDFs. Furthermore, no
information in the IDFs must be artificially
overclassified so that the mediation will pass.

The side effect (which is correct) is that
information moving in the system outside of
the domain of the PCT Toolkit and its
corresponding OS must be protected at the
level as classified by the Toolkit.

There are several object classes in the
system and the security rules applied to a
class may be unique. For example, write
access at run-time to some object classes does
not return status (write up allowed), whereas
for others there is status returned (write up
not allowed to minimize covert channels).

4.5.2  Hardware-Specific Checks
 Different processors and hardware
engines, e.g., a graphics display engine, have
different capabilities with respect to security.
The PCT Toolkit will use the definitions in
the CK file to determine what additional
checks must be applied. The Toolkit is not
coded for specific checks; rather it determines
the correct way to model the hardware and
applies the applicable general rule. For
example, if the hardware cannot keep
different users separate and if it has both read
and write capabilities, then the PCT will
model the hardware as an object that inherits
the classification of its user(s) and to which
each user has read/write access.



4.6  Build Tables
Once the PCT Toolkit has built a system

model and applied the security policy, it can
create the tables necessary for the run-time
TCB components to establish a secure state
and to enforce the mediation decisions made
by the Toolkit.

These tables include not only PCTs but
also other tables. This is another case where
the PCT Toolkit has taken on greater
capabilities than those defined in the original
System Build approach.

4.6.1  System Start-Up Information
One output is the System Start-Up Table

(SST). At the start-up of the target system,
the TCB software that controls the master
nonvolatile memory comes up, reads and uses
the SST, and then distributes the SST in a
secure and reliable manner to each of the
distributed start-up programs in the TCB.
These programs use the SST to control local
start-up. The SST indicates what TCB
components should be loaded and the
physical resources that should be used during
the start-up process. Since the start-up
scenario can change based on the System
Build Configuration, and since the PCT
Toolkit allocates resources and knows the
size of objects, the Toolkit can create the SST
that contains information on what is to be
loaded, how big it is, and the resources that
should be used.

4.6.2  System Manager Tables
The PCT Toolkit also builds a set of

tables that are used by System Manager, a
high-level program that controls the system,
including what System Build Capability is
used. System Manager is part of the TCB.

Because the Toolkit knows all programs
needed to accomplish a particular capability
in the System Build Configuration and knows
what hardware is needed, it can build tables
to assist the System Manager.

Immediately after start-up, the System
Manager program will assess the availability

of the hardware assets and based on that will
determine which capabilities can be met from
the set defined in System Build
Configuration. It then chooses the best
capability based on predetermined input
and/or pilot input. Then, using tables built by
the Toolkit, the System Manager can
determine what programs and what PCTs
need to be loaded. It is the System Manager
that communicates with the OS to coordinate
loading of a program and its PCT.

4.6.3  PCTs
There is one PCT created for each subject

in the target system.
The internal organization of a PCT is very

straightforward: there is a header plus one
section per object class. The header contains
a timestamp, the System Build Configuration
identifier, subject information, and other
information about the creation of the PCT.

Each object class section is ordered
lexicographically by object name, only for
those objects accessed by that subject; hence
only non-null entries are present in the PCT.
The PCT does not contain the object names.
In order to save space and to effect an
efficient run-time look-up into the PCT, the
user program when calling the OS will
specify an object by using its relative lexical
order for a given object class. Hence, if the
object name is first when ordered with the
other objects of that class which are accessed
by that subject, then “1” would be specified
to the OS.

Unique subject and object identification is
contained within each PCT. Each PCT header
contains the unique subject identifier. Each
object can be uniquely identified by its object
class and resource identifier. The resource
identifier is either the physical identifier
assigned by the PCT Toolkit or it is a system-
unique identifier for the class used to allocate
run-time resources.

Many object classes allow for frequency
of access to be specified, and this information
is contained in their object entries. For these



classes the OS can perform denial of service.
There may also be priority information in
each entry for some object classes.

4.7  The Log File and Reports
The PCT Toolkit creates a log file as it

executes, which documents all Toolkit
operations relevant to a reviewer. This file is
always generated and includes:

• A timestamp and other information
relevant to configuration management
• A list of all user inputs and options
• All input files read
• All output files generated
• All security violations
• All other errors and warnings

The Toolkit also creates several reports
that allow the user to see the information
from various perspectives. One report details
the information contained in each PCT. There
are also reports that organize information by
System Build Capabilities. Other reports
detail information on all objects or specific
object classes. There is also an ASCII table
file that organizes all information related to
the system information flow model created by
the Toolkit. In this way others can build their
own tool to read and organize the information
that best suits their specific needs.

The Object Cross Reference report is of
particular significance. There is one report
per System Build Capability. It contains all
objects for that capability, together with their
object identifiers and classifications. The
classification from the IDF information
(content labeling) is listed with the
classification at which the information must
be protected (container labeling).

5.  PCT Toolkit Security Issues

5.1  Review Issues
The PCT Toolkit works under the

assumption that the information it uses is
complete and correct and that it has been
reviewed and approved by appropriate
personnel. Therefore, if interface information
states that a subject needs a specific type of
access to an object, the Toolkit will assume
that the access request is consistent with the
principle of least privilege.

It should be noted that some CK files are
more security relevant than others; therefore,
the PCT Toolkit uses several CK files so that
the review of the Toolkit for certification and
accreditation (C&A) is simplified.

CK files were chosen over IDFs for
specifying privileged OS services so that this
very sensitive information would be located
in one small file for easy review. Although
there are generally only a handful of such
services, they generally give very powerful
privileges. Therefore, ease of review was a
primary concern. These services are also very
OS dependent. This use of CK files keeps the
more general IDF information from
becoming OS specific.

5.2  Comparison of Input Methods
The database and IDF input methods have

different advantages and disadvantages. The
advantage of the database method is that the
information is logically grouped and there is
no repetition that can lead to inconsistencies.
Its main disadvantage is that the information
used by the Toolkit is not readily reviewable:
the reviewer must correctly use database tools
to review it, and the review procedures are
not well defined. Compounding the review
problem is the fact that this method is likely
to contain a lot of information that is not of
immediate interest to the reviewer. Another
disadvantage of this method is that the
Toolkit is closely coupled to the database.



The use of IDFs is seen as the better
implementation from a security review
standpoint: IDFs are easy to review and
correspond closely to what is contained in a
PCT. However, IDFs require the PCT Toolkit
to perform more extensive data consistency
checks than the database approach. For
example, all IDF references to object O will
be checked to see that all IDFs that define O
attributes define them to be the same. One
such attribute is the security classification of
the object.

5.3  PCT Entry Ordering
The lexigraphical ordering of PCT entries

within an object class may at first seem rather
burdensome since the user must know this
order when calling the OS, but it is in fact
quite simple to implement using high-level
programming languages. For example, in the
Ada programming language, the user only
need create an enumerated type for each
object class. The only burden upon the user is
to alphabetize the symbolic names in the
enumerated type. One user generates these
enumerated type definitions in Ada packages
using a tool which accesses the database.

This ordering method has several
benefits. It is efficient from both a space and
size perspective. It also allows the user to use
the same symbolic names as defined in the
database. Finally, a side benefit is that if good
programming practices are used, the code
becomes rather easy to review in terms of the
objects to which a program makes reference.

This ordering implementation does not
introduce any security problems. The IDF
information defines what objects a subject
has access to, assuming the mediation checks
pass. Hence, if the IDF defines access to five
objects of a given class, then the PCT section
will contain five entries, with the appropriate
access rights. Since all untrusted subjects
operate at a single level, any erroneous access
within the allowed range will be just that - a
programming error. The PCT only contains
approved accesses, hence the subject cannot

access anything it does not have the rights to
access. However, if the subject is trusted and
has access to objects of differing
classifications, then a potential problem
exists; however, trusted programs should be
closely reviewed for correctness and any
reviewer instructions would explicitly state
this as an item for careful review.



6.  Conclusion

6.1  Advantages and Disadvantages
Summarized

Implementation of the  PCT Toolkit has
revealed the following advantages of the
System Build approach:
• The approach allows us to meet exacting
system performance and security
requirements simultaneously.
• The approach fits in well with the system
and software engineering process, ensuring
integrated system security engineering.
• System integration time is reduced due to
detection of design and coding errors at
system build time. This also reduces life
cycle cost by decreasing the number of hours
needed for integration in the target
environment.
• Run-time reliability is improved as a result
of reliability requirements in support of
security, and as a result of finding security
errors prior to run-time.
• System start-up and initialization is
simplified, allowing for faster turnaround and
takeoff.

The following drawbacks to the approach
have also been identified:
• The approach increases the Trusted
Computing Base in size and span.
• It takes longer to perform system updates.
Since updates occur infrequently in the
current environment, this does not have a
significant impact today, but would have to
be addressed if the situation changes.
• Changes to subjects/objects and the addition
of new subjects requires  a system-wide
update of the System Build.
• Output of the PCT Toolkit is dependent on
the quality and reliability of input data. This
is handled today through tool support and
development methods (e.g., code reviews).

These drawbacks have been addressed for
the current implementation, but to achieve
generalization of the approach it is desirable
to mitigate these with standard methods.

6.2  Work To Be Done
We believe the viability and benefits of

the System Build approach have been
demonstrated in its implementation in the
form of the PCT Toolkit. There is additional
work that should be done to improve on the
current methods, mitigate some of the
drawbacks of the current instantiation, and
generalize the approach to make it more
widely applicable.

The PCT Toolkit was designed to allow
for the application of various security policies
and models. We believe it would be
worthwhile to test this by applying new
models (e.g., Rushby Non-Interference) and
studying their impact on the tool.

We anticipate that there will be times
when a new subject or object will be added to
a system. An analysis should be done to
determine the viability of adapting System
Build and PCT Toolkit for this scenario.

The System Build approach integrates
system security engineering with software
and system engineering. By extending the
integration of the methods and tools, we
believe several results can be achieved:
increased reliability of input data, improved
portability to other software engineering
environments, and decreased time to generate
a System Build Configuration.

7.  References
[AOS]  M.M. Bernstein and C.S. Kim,

“AOS: An Avionics Operating System for
Multilevel Secure Real-Time
Environments," Computer Systems
Application Conference, December 1994.

[BLP]  D. E. Bell and L.J. LaPadula, “Secure
Computer Systems: Unified Exposition
and Multics Interpretation,” MTR-2997,
The MITRE Corp., Bedford, MA, March
1976.



[SYSBUILD]  J.P. Alstad, T.C. Vickers
Benzel, et al., “The Role of System Build
in Trusted Embedded Systems,”
Proceedings of the 13th National
Computer Security Conference, Volume
1, October 1990.

[SYSBLDLL]  T.C. Vickers Benzel, M.M.
Bernstein, et al., “Real-Time Trust With
‘System Build’: Lessons Learned,” IEEE,
1993.


